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Fig.2. Difference density in plane of cyclopropane ring. Cont- 
our interval 0.01 e.A-3, zero contour broken. Estimated 
standard deviation averages 0.017 e.A-3. 

etical difference density that self-consistent-field calc- 
ulations (Scherr, 1955) place along the bond axis in the 
N2 molecule (Brato~, Daudel, Roux & Allavena, 1960). 

Intermolecular N • • • H contacts of 2.73 and 2.81 A 
and N .  • • C(2) contacts of 3.10 A hold the structure 
firmly together and lead to small departures, up to 
0.015 A, from 3m molecular symmetry. An interesting, 
though expected, feature is the non-linearity of the 
C - C - N  angle; the C - N  bond is deflected 1-7 ° to- 
wards the molecular symmetry axis. While an inter- 
molecular source cannot be ruled out, the deflection 
is thought to reflect a bending of the C(1)-C(2) bond, 

with consequent rotation of the C(2) valence orbitals 
(Hirshfeld, 1964), as a result of repulsion between C(2) 
and H. 

We are grateful to Professor G. W. Griffin and to 
Dr T. Sadeh for samples of the compound. 
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The combination of isomorphous replacement and anomalous scattering data in phase determination 
of non-centrosymmetric reflexions is discussed. Expressions are derived which take into account the 
relative reliabilities of the experimental observations and enable any combination of replacement atoms 
to be used in the phase determination. 

North (1965) has proposed an improved method for the 
combination of isomorphous replacement and anomal- 
ous scattering data in phase determination of non- 
centrosymmetric reflexions which makes use of the 
greater intrinsic accuracy of the anomalous scattering 

measurements. North's formulation leads to alternative 
expressions for the phase probability distribution, and 
North leaves it open as to which of these expressions 
should be used in practice. The purpose of this com- 
munication is to show that the problem may be exam- 
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ined in a general way, and to extend the method so that 
anomalous scattering measurements from isomorphous 
crystals differentiated by any combination of 'heavy 
atoms' may be included in the phase determination. 

Blow & Crick's (1959) tieatment of errors in the iso- 
morphous replacement method can be illustrated by a 
phase diagram in which the three vectors F, Fn  and fe 
do not, in general, form a closed triangle. (F and Fn 
are the observed structure amplitudes of the isomor- 
phous 'parent' and 'derivative' compounds, and fe is the 
calculated structure factor of the atoms which differ- 
entiate the two compounds). By considering the lack 
of closure of this triangle and estimating the error in 
its determination, the probability of F having a given 
phase may be obtained. Similarly, to illustrate the 
treatment of errors in phase determination using both 
isomorphous replacement and anomalous scattering 
data the phase diagram shown in Fig. 1 can be con- 
structed. Fn+ and Fn-  are the observed structure am- 
plitudes of a Friedel pair of derivative reflexions; F is 
the corresponding structure amplitude of the parent 
compound which is assumed to have negligible anomal- 
ous scattering; f and 6 are the calculated components 
of the combined 'heavy atom' scattering and are dis- 
cussed in more detail later, and Fc is defined as the re- 
sultant of F and f. e+ represents the lack of closure of 
the FH + vector and e- the lack of closure of Fn-. The 
phase of the heavy atom structure factor has been de- 
noted by ~, in place of North's c~. This is in keeping with 
the nomenclature used in a related paper (Matthews, 
1966) dealing with the location of anomalously scat- 
tering heavy atoms in protein structures. Blow & Ross- 
mann (1961) have shown that the overall phase prob- 
ability distribution using both isomorphous replace- 
ment and anomalous scattering data can be written as 

P(to) ocexp { -  (e~_ +ez__)/2E 2} (1) 

where E is the total r.m.s, error in determining e+ and 
e-. As North points out, this procedure does not take 
into account the inherently greater accuracy of the an- 
omalous differences. This accuracy can be taken into 
account by rewriting the lack of closure terms in a 
different form, viz. 

+ = ½[(e+ + + 
=½[xl(to) 2 + x~(to)2]. (2) 

6 t 

F H  + 

Fig. 1. Vector diagram showing lack of closure with combined 
isomorphous replacement and anomalous scattering data. 

Having thus defined xl(to) and xl(to) it will now be 
shown that these quantities can be given simple physi- 
cal interpretations. Let us define F~- =½(Fn+ + Fn-).  
If there were no anomalous scattering F~ would equal 
Fn the derivative structure amplitude. Since 3 is nor- 
mally small compared with Fe, it follows from Fig. 1 
that 

xl(to) = (e+ + e - ) =  2 ( F c -  (3) 

Xl(to ) can  therefore be considered as the 'total isomor- 
phous replacement lack of closure'. Analogously, xl(to) 
which depends on the anomalous scattering difference 
An = (FH+ - F H - )  can be considered as the 'anomalous 
scattering lack of closure'. From the definitions of 
x(to) and x'(to) given by North, it follows that xl(to)= 
-x'(to) and xl(to)=2x(to). As discussed by North, the 
error in determining x~(to) will tend to be less than that 
for xl(to). If  E1 and E~ are defined as estimates of the 
total r.m.s, error in determining xl(to) and xl(to) res- 
pectively, then the overall relative probability P(to) of 
any particular phase to being correct is 

P(to)=exp 
2 e ?  I j 

Clearly P(to) may be written 

P(to) = Pis(to) • Pan(to) 

(4) 

(5) 
where Pis(to) is the phase probability distribution ob- 
tained using isomorphous replacement data, and Pan(t0) 
is the probability distribution obtained from anomal- 
ous scattering data. 

Pis(to) = exp {-2(Fe-F~)Z/E2}.  (6) 
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Fig.2. Phase diagram illustrating phase determination using 
anomalous scattering data. Fct and Fc2 give the most prob- 
able phases of Fc, and F1 and F2 are the corresponding most 
probable values of F. 

A C 20 - 6* 
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Since El =2E, this is equivalent to North's equations 
(1) and (2). 

In evaluating Pan(~0) we first consider the case in 
whichfand 6 in Fig. 1 are orthogonal. It will be shown 
later that Pan(~0) may be evaluated without this as- 
sumption; however, this special case illustrates the 
general method and can be used if all the heavy atoms 
have the same relative anomalous scattering. If then 
co=~z/2 and we again use the fact that 6 is normally 
small compared with Fc, we have 

e + - e - =  --FH- +FH+--26 sin y 
= - - A H - - 2 6 s i n ~ .  (7) 

Now 

sin ),=(F/Fc) sin (~,-  ~0) 
=(F/Fcf)(b cos ~0-a sin ~0) (8) 

where a = f c o s  ~u and b = f s i n  ~u [see also (14) and 
(14a)]. Substitution in (7) leads to 

e+- e- = - A H -  (2F6/Fcf)(b cos ~0 - a sin ~0). (9) 

This result is similar to North's equation (6), but the 
assumption that the phase triangle should be closed at 
phase ~0 has not been needed. From North's derivation 
it is not clear whether Fc should be replaced by F~, 
and although North suggests that it appears to be valid 
to do so, a more correct procedure in evaluating the 
probability distribution for the phase of F is to use 

1 [ - A n  Pan(~0)=exp - 2E1~ 

-(2FS/Fcf)  (b cos ~0-a sin ~0)]z / (10) 

where E~ equals North's E '  and Fc = IF z +f2 q_ 2F(a cos 
~0 +b  sin ~0)]*. The physical interpretation of this result 
is illustrated by the construction of Fig. 2. The calcul- 
ated vectors f and ~ are plotted first, and then circles of 
radii Fu+ and F u -  are drawn with centres C+ and C-. 
The points of intersection of these circles give the most 
probable directions of Fe (i.e. along MP and MQ, the 
alternative solutions symmetrical about 5). It may be 
noted that if the magnitude of F~ = ½(FH+ + F u - )  were 
to change, AH=(FH+--FH-) remaining constant, P 
and Q would lie on a hyperbola the direction of whose 
asymptotes is given by sin y= -An/26.  Using the ap- 
proximation that 6 is small compared with MP and 
MQ is equivalent to assuming that the hyperbola can 
be replaced by its asymptotes. The directions of the 
asymptotes are determined only by the difference 
between FH+ and F u - ,  and are independent of their 
sum, i.e. the solutions are independent of any experi- 
mental error in the magnitude of F~. The most prob- 
able directions of Fe having been found, the most prob- 
able phases of F can now be found by drawing a circle 
of radius F about the origin. This circle represents the 
locus of all possible phases of F, and the most prob- 
able phases are given by OR and OS where R and S are 
the intersections of the Fc direction vectors with the 
F circle. 

To show the effect of using F~ instead of Fc in cal- 
culating Pan(~0) and hence the joint phase probability 
distribution, two examples are given. In the first (Fig. 3) 
the isomorphous replacement and anomalous scattering 
data give a 'good' phase determination in the sense 
that P~s(~0) and Pan(~0) have maxima which approxim- 
ately coincide. In the second (Fig.4) the isomorphous 
replacement and anomalous scattering data give some- 
what conflicting phase determinations and a compro- 
mise has to be made. In the calculations E '  was put 
equal to a third of E. As might be expected the alter- 
native calculations using F~r and Fe do not lead to 
widely diverging results; however, in both cases the 
form of the Pan(p) distribution changes appreciably. 
The difference is rather striking in the case of Fig. 3(b) 
where the use of F~ results in a bimodal distribution for 
Pan(~0) whereas using Fe gives a unimodal distribution 
as would be expected from Fig. 3(a). For comparison, 
the most probable phases of F obtained with the use of  
Pan(~0) only are shown on the phase diagrams. Clearly 
the use of Fe gives a physically more acceptable result; 
i.e. the direction of the most probable F is such that 
Fc is directed toward the points of closure of the FH+ 
and FH- phase circles. In the 'good' phase determinat- 
ion neither the overall most probable phase nor the 
'best' phase is changed very much, but in the poorer 
determination the 'best' phase is changed by 11 degrees 
and the most probable phase by 20 degrees. It may be 
noted that the treatment here, following that of Blow 
& Crick, assumes that any errors in F may be consider- 
ed as lying in F~. Using F~ in place of Fe in evaluating 
Pan(~) is not equivalent to assuming that all the errors 
reside in F rather than in F~. If this assumption were 
made, then in Fig.2 the most probable phases of F 
would be given by OP and OQ rather than OR and OS. 
From Fig.2 [and from Figs. 3(a) and 4(a)] it is clear that 
the use of either assumption would generally lead to 
much the same values for the most probable phases. 

Phase determination 
with the use of heavy atoms of different types 

Suppose that two isomorphous crystal structures are 
differentiated by N 'heavy atoms' which may or may 
not exhibit significant anomalous scattering. Let the 
position vector of the nth atom be rn and its scattering 
factor 

j~ : f ' ,+ i f ' , ' .  

For a reflexion with indices (h, k, l) the calculated 
structure factor of the N atoms is 

N 

fc(h)= Zfn(h) exp (2~zih. rn) 
r t = l  

N 

+i S f'n'(h) exp(2rcih.rn) (11) 
n = l  

=f(h) + 5(h). (12) 
For simplicity we write 

f(h) + ~i(h) = f + 6 

and this defines f and 6 in Fig. 1. 
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Fig.3. (a) Phase diagram for a 'good' phase determination. 
~1 and ez are the most probable phases of F obtained with 
the use of P=~(e) only. Cx and C2 are the centroids of the 
joint probability distributions P(e). The subscripts 1 and 2 
refer to calculations using respectively F= and Fa" in evalu- 
ating P=~(g,). (b) Alternative anomalous scattering phase 
probability distributions Pan((p). The broken line is obtained 
with F=, the chain line with Fn'. (c) Combination of iso- 
morpheus replacement probability distribution P~s(e) and 
anomalous scattering probability distribution P=n((P) to give 
joint phase probability P(e). P~s({a) is drawn solid and the 
alternative joint distribution P(e) is drawn similarly to the 
P=n(e) curve in (b) from which it was derived. 
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Fig.4. (a) Phase diagram for a 'poor' phase determination. 
Otherwise as for Fig.3(a). (b) Alternative anomalous scat- 
tering phase probability distribution Pan({a) for the 'poor' 
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native Pa-(q~) distributions shown in (b) to give alternative 
combined phase probability distributions P(~). 
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If, for this reflexion, the N atoms all have the same 
ratio k =f'~/fn', i.e. they are all 'of the same type' (Ross- 
mann, 1961) then 

fc(h) = f +  ~5 = f +  ik-~f (13) 

and f and ~i are orthogonal. In this case the magnitude 
of ~i can be found directly from that of f and the phase 
determination carried out as outlined in the previous 
section. In a more general case the isomorphous deriv- 
ative may differ from the parent in such a way that the 
ratio f'~/f'n" will not be a constant. For example, the 
derivative may contain heavy atoms of different atomic 
species, or it may contain heavy atoms covalently 
bonded to the parent structure through atoms of known 
position but lower atomic number. Also, in the case of 
complex ions, which are often used as 'heavy atoms', 
the magnitude of the ratio f ' / f "  may change as a func- 
tion of the angle of scattering (Matthews, 1966). A 
method of treating such cases will now be described. 

It was shown above [equation (12)] that the calcul- 
ated heavy atom structure factor fc could be written as 
the sum of the vectors f and ~. Let co be the angle 
between these components (see Fig. 1). It is customary 
to express f in the form 

f = a + i b  (14) 
where N 

a = Zf~,(h) cos (27ri h .  rn) 
n= l  

and 
N 

b = Xf~(h) sin (2rri h .  rn). (14a) 
n = l  

Similarly, li may be written 

g=a'  +ib' (15) 

where, from the definition of ~i, 

and 

N 
a ' =  -- Xf~'(h) sin (2rcih. rn) 

n = l  

N 
b ' =  Xf~,'(h) cos (2rcih. r~). 

n=l  
(15a) 

In deriving the expression for Pis(rp), the phase prob- 
ability distribution using isomorphous replacement, 

no assumption was made about the value of co; there- 
fore equation (6) can still be used, and we only need 
reconsider the derivation of Pan(~0). 

Previously the anomalous scattering lack of closure 
was given by equation (7). This result can be rewritten 
in the more general form 

e + - e - =  - A n + 2 6  cos (y+co). (16) 

Thus, in the most general case, the expression for 
Pan(~0) the phase probability distribution using an- 
omalous dispersion data is 

{ 1 [__ Z~H-~-26 cos (7 + 09)] 2} (17) Pan(~0)=exp - ~ 

This may be evaluated by using the following relation- 
ships which are readily verified. 

sin y = [ f ( b  cos rp -a  sin ~o)]/(fef) 
cos ), = [ f 2 +  f ( a  cos ~0+ b sin ~)]/(Fcf) 
sin co =(ab' -a 'b) / (6 f )  
cos co=(aa' +bb')/(3f) . (18) 

It may be noted that in practice if a' and b' are deter- 
mined at the same time as a and b, little extra comput- 
ing will be needed, and in fact the evaluation of the 
phase probability distribution in the most general case 
involves a comparatively small increase in computa- 
tion above that involving in using the isomorphous 
replacement method alone. 

It is a pleasure to acknowledge helpful discussions 
with Dr D. M. Blow and Dr R. Diamond. I should also 
like to thank Miss J. Collard for her assistance and for 
preparing the diagrams. 
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